segunda-feira, 30 de maio de 2011

Direito Administrativo

A Apostilha está compactada no Winrar é composta de 252 paginas e tem como conteúdo DIREITO ADMINISTRATIVO é ideal para quem quer estudar para concursos e outros fins, espero que faça bom proveito.

1.    Noções Gerais de Direito Administrativo
2.    Organização Administrativa
3.    Regime Constitucional do Agente Público
4.    Atos Administrativos
5.    Licitação Pública
6.    Contratos Administrativos
7.    Poderes Administrativos
8.    Bens Públicos
MEGAUPLOAD:

sábado, 28 de maio de 2011

HISTÓRIA DA GEOMETRIA

HISTÓRIA DA GEOMETRIA

Uma estranha construção feita pelos antigos persas para estudar o movimento dos astros. Um compasso antigo. Um vetusto esquadro e, sob ele, a demonstração figurada do teorema de Pitágoras. Um papiro com desenhos geométricos e o busto do grande Euclides. São etapas fundamentais no desenvolvimento da Geometria. Mas, muito antes da compilação dos conhecimentos existentes, os homens criavam, ao sabor da experiência, as bases da Geometria. E realizavam operações mentais que depois seriam concretizadas nas figuras geométricas.


Uma medida para a vida

As origens da Geometria (do grego medir a terra) parecem coincidir com as necessidades do dia-a-dia. Partilhar terras férteis às margens dos rios, construir casas, observar e prever os movimentos dos astros, são algumas das muitas atividades humanas que sempre dependeram de operações geométricas. Documentos sobre as antigas civilizações egípcia e babilônica comprovam bons conhecimentos do assunto, geralmente ligados à astrologia. Na Grécia, porém, é que o gênio de grandes matemáticos lhes deu forma definitiva. Dos gregos anteriores a Euclides, Arquimedes e Apolônio, consta apenas o fragmento de um trabalho de Hipócrates. E o resumo feito por Proclo ao comentar os "Elementos" de Euclides, obra que data do século V a.C., refere-se a Tales de Mileto como o introdutor da Geometria na Grécia, por importação do Egito.

Pitágoras deu nome a um importante teorema sobre o triângulo-retângulo, que inaugurou um novo conceito de demonstração matemática. Mas enquanto a escola pitagórica do século VI a.C. constituía uma espécie de seita filosófica, que envolvia em mistério seus conhecimentos, os "Elementos" de Euclides representam a introdução de um método consistente que contribui há mais de vinte séculos para o progresso das ciências. Trata-se do sistema axiomático, que parte dos conceitos e proposições admitidos sem demonstração (postulados o axiomas) para construir de maneira lógica tudo o mais. Assim, três conceitos fundamentais - o ponto, a reta e o círculo - e cinco postulados a eles referentes servem de base para toda Geometria chamada euclidiana, útil até hoje, apesar da existência de geometrias não-euclidianas baseadas em postulados diferentes (e contraditórios) dos de Euclides.

O corpo como unidade

As primeiras unidades de medida referiam-se direta ou indiretamente ao corpo humano: palmo, pé, passo, braça, cúbito. Por volta de 3500 a.C. - quando na Mesopotâmia e no Egito começaram a ser construídos os primeiros templos - seus projetistas tiveram de encontrar unidades mais uniformes e precisas. Adotaram a longitude das partes do corpo de um único homem (geralmente o rei) e com essas medidas construíram réguas de madeira e metal, ou cordas com nós, que foram as primeiras medidas oficiais de comprimento.

Ângulos e figuras

Tanto entre os sumérios como entre os egípcios, os campos primitivos tinham forma retangular. Também os edifícios possuíam plantas regulares, o que obrigava os arquitetos a construírem muitos ângulos retos (de 90º). Embora de bagagem intelectual reduzida, aqueles homens já resolviam o problema como um desenhista de hoje. Por meio de duas estacas cravadas na terra assinalavam um segmento de reta. Em seguida prendiam e esticavam cordas que funcionavam à maneira de compassos: dois arcos de circunferência se cortam e determinam dois pontos que, unidos, secionam perpendicularmente a outra reta, formando os ângulos retos.

O problema mais comum para um construtor é traçar, por um ponto dado, a perpendicular a uma reta. O processo anterior não resolve este problema, em que o vértice do ângulo reto já está determinado de antemão. Os antigos geômetras, o solucionavam por meio de três cordas, colocadas de modo a formar os lados de um triângulo-retângulo. Essas cordas tinham comprimentos equivalentes a 3, 4 e 5 unidades respectivamente. O teorema de Pitágoras explica porque: em todo triângulo-retângulo, a soma dos quadrados dos catetos é igual ao quadrado da hipotenusa (lado oposto ao ângulo reto). E 32+42=52, isto é, 9+16=25.

Qualquer trio de números inteiros ou não que respeitem tal relação definem triângulos-retângulos, que já na antiguidade foram padronizados na forma de esquadros.

Para medir superfícies

Os sacerdotes encarregados de arrecadar os impostos sobre a terra provavelmente começaram a calcular a extensão dos campos por meio de um simples golpe de vista. Certo dia, ao observar trabalhadores pavimentando com mosaicos quadrados uma superfície retangular, algum sacerdote deve ter notado que, para conhecer o total de mosaicos, bastava contar os de uma fileira e repetir esse número tantas vezes quantas fileiras houvesse. Assim nasceu a fórmula da área do retângulo: multiplicar a base pela altura.

Já para descobrir a área do triângulo, os antigos fiscais seguiram um raciocínio extremamente geométrico. Para acompanhá-lo, basta tomar um quadrado ou um retângulo e dividí-lo em quadradinhos iguais. Suponhamos que o quadrado tenha 9 "casas" e o retângulo 12. Esses números exprimem então a área dessas figuras. Cortando o quadrado em duas partes iguais, segundo a linha diagonal, aparecem dois triângulos iguais, cuja área, naturalmente, é a metade da área do quadrado.

Quando deparavam com uma superfície irregular da terra (nem quadrada, nem triangular), os primeiros cartógrafos e agrimensores apelavam para o artifício conhecido como triangulação: começando num ângulo qualquer, traçavam linhas a todos os demais ângulos visíveis do campo, e assim este ficava completamente dividido em porções triangulares, cujas áreas somadas davam a área total. Esse método - em uso até hoje - produzia pequenos erros, quando o terreno não era plano ou possuía bordos curvos.

De fato, muitos terrenos seguem o contorno de um morro ou o curso de um rio. E construções há que requerem uma parede curva. Assim, um novo problema se apresenta: como determinar o comprimento de uma circunferência e a área de um círculo. Por circunferência entende-se a linha da periferia do círculo, sendo este uma superfície. Já os antigos geômetras observavam que, para demarcar círculos, grandes ou pequenos, era necessário usar uma corda, longa ou curta, e girá-la em torno de um ponto fixo, que era a estaca cravada no solo como centro da figura. O comprimento dessa corda - conhecido hoje como raio - tinha algo a ver com o comprimento da circunferência. Retirando a corda da estaca e colocando-a sobre a circunferência para ver quantas vezes cabia nela, puderam comprovar que cabia um pouco mais de seis vezes e um quarto. Qualquer que fosse o tamanho da corda, o resultado era o mesmo. Assim tiraram algumas conclusões: a) o comprimento de uma circunferência é sempre cerca de 6,28 vezes maior que o de seu raio; b) para conhecer o comprimento de uma circunferência, basta averiguar o comprimento do raio e multiplicá-lo por 6,28.

E a área do círculo? A história da Geometria explica-a de modo simples e interessante. Cerca de 2000 anos a.C., um escriba egípcio chamado Ahmes matutava diante do desenho de um círculo no qual havia traçado o respectivo raio. Seu propósito era encontrar a área da figura.

Conta a tradição que Ahmes solucionou o problema facilmente: antes, pensou em determinar a área de um quadrado e calcular quantas vezes essa área caberia na área do círculo. Que quadrado escolher? Um qualquer? Parecia razoável tomar o que tivesse como lado o próprio raio da figura. Assim fez, e comprovou que o quadrado estava contido no círculo mais de 3 vezes e menos de 4, ou aproximadamente, três vezes e um sétimo (atualmente dizemos 3,14 vezes). Concluiu então que, para saber a área de um círculo, basta calcular a área de um quadrado construído sobre o raio e multiplicar a respectiva área por 3,14.

O número 3,14 é básico na Geometria e na Matemática. Os gregos tornaram-no um pouco menos inexato: 3,1416. Hoje, o símbolo p ("pi") representa esse número irracional, já determinado com uma aproximação de várias dezenas de casas decimais. Seu nome só tem uns duzentos anos e foi tirado da primeira sílaba da palavra peripheria, significando circunferência.

Novas figuras

Por volta de 500 a.C., as primeiras universidades eram fundadas na Grécia. Tales e seu discípulo Pitágoras coligiram todo o conhecimento do Egito, da Etúrria, da Babilônia, e mesmo da Índia, para desenvolvê-los e aplicá-los à matemática, navegação e religião. A curiosidade crescia e os livros sobre Geometria eram muito procurados. Um compasso logo substituiu a corda e a estaca para traçar círculos, e o novo instrumento foi incorporado ao arsenal dos geômetras. O conhecimento do Universo aumentava com rapidez e a escola pitagórica chegou a afirmar que a Terra era esférica, e não plana. Surgiam novas construções geométricas, e suas áreas e perímetros eram agora fáceis de calcular.

Uma dessas figuras foi chamada polígono, do grego polygon, que significa "muitos ângulos". Atualmente até rotas de navios e aviões são traçadas por intermédio de avançados métodos de Geometria, incorporados ao equipamento de radar e outros aparelhos. O que não é de estranhar"desde os tempos da antiga Grécia, a Geometria sempre foi uma ciência aplicada, ou seja, empregada para resolver problemas práticos. Dos problemas que os gregos conseguiram solucionar, dois merecem referência: o cálculo da distância de um objeto a um observador e o cálculo da altura de uma construção.

No primeiro caso, para calcular, por exemplo, a distância de um barco até a costa, recorria-se a um curioso artifício. Dois observadores se postavam de maneira que um deles pudesse ver o barco sob um ângulo de 90º com relação à linha da costa e o outro sob um ângulo de 45º. Isto feito, a nave e os dois observadores ficavam exatamente nos vértices de um triângulo isósceles, porque os dois ângulos agudos mediam 45º cada um, e portanto os catetos eram iguais. Bastava medir a distância entre os dois observadores para conhecer a distância do barco até a costa.

O cálculo da altura de uma construção, de um monumento ou de uma árvore é também muito simples: crava-se verticalmente uma estaca na terra e espera-se o instante em que a extensão de sua sombra seja igual à sua altura. O triângulo formado pela estaca, sua sombra e a linha que une os extremos de ambos é isósceles. Basta medir a sombra para conhecer a altura.

Fonte: Dicionário Enciclopédico Conhecer - Abril Cultural

sexta-feira, 27 de maio de 2011

ESTATUTO DA CRIANÇA E DO ADOLESCENTE - ECA

Baixe o Estatuto da Criança e do Adolescente - ECA e fique por dentro dos direitos e deveres das crianças e dos adolescentes. Bom estudo.

BAIXE AQUI


quinta-feira, 26 de maio de 2011

Curso de Xadrez

Aprenda xadrez utilizando 2 livros:
Curso de Xadrez Básico - Wilson da Silva
Lições Elementares de Xadrez - Capablanca
Tamanho: 4 MB, Formato: Rar, Idioma: Português
Servidores: Rapidsahre

AVG Internet Sacurity 8


Proteção em tempo real, actualizações automáticas, verificação em segundo plano de baixo impacto para ameaças on-line e envio instantâneo para a quarentena ou remoção de arquivos infectados, o que garante a máxima protecção. Todas as interacções entre o seu computador e a Internet são monitorizadas para que nada entre no seu sistema sem o seu conhecimento. Registo válido até 2018!
Tamanho: 55 MB
Download - EasyShare

Avast pro 4


Descrição: Anti-vírus popular que escaneia e retira milhares de vírus, worms e cavalos-de-tróia de seu sistema.
O programa é ganhador de prêmios, possuindo interface simples e intuitiva para o operador preparar e rodar tarefas de busca e verificação de infecção.
Inclui um atualizador para você manter-se em dia com as novas ameças da web e um scanner de correio eletrônico integrado para análise de seus e-mails.
Tamanho: 28,3 Mb, Download - EasyShare

Antivirus NOD32


Navegar pela internet significa se expor a uma quantidade absurda de ameaças de diferentes tipos. O mais grave é que, a cada dia, milhares de novos vírus são desenvolvidos pelo simples “prazer” de prejudicar os usuários da internet. E foi-se o tempo em que estes perigos se limitavam a emails. Hoje, visitar uma página mal intencionada pode ser suficiente para colocar a segurança de suas informações em risco.
O NOD32 é um antivírus desenvolvido para prever as ameaças e impedir que você as acesse, ao invés de remediar seu computador já infectado. O programa foi altamente elogiado e caiu nas graças do público justamente por essa característica preventiva, chamada Proteção Proativa.
Este é um protetor com um altíssimo nível de detecção e eliminação de vírus, trojans, worms, adwares, spywares, phishings e rootkits — palavras que tiram o sono de inúmeros usuários. O programa protege diferentes sistemas: Windows XP, MS-DOS, servidores e outros.
Por dois anos seguidos, o NOD32 foi considerado a melhor solução antivírus pelos testes da página AV-Comparatives, um serviço independente que compara diferentes programas do gênero.
Quatro características principais foram fundamentais para que o NOD32 superasse toda a concorrência: a proteção proativa, que combina diferentes funções para impedir que as ameaças atinjam seu computador; a detecção precisa, a qual permite a identificação exata dos perigos sem o risco de falsos positivos; o design leve, que exige pouca memória e capacidade do processador; e as altas velocidades de pesquisas em seu PC.
Download:

terça-feira, 24 de maio de 2011

FOTOS DA BANDA PEDRO CARNAÚBA EM CAJUEIRO

Algumas fotos da Banda Fanfarra da Escola Municipal Pedro Carnaúba, que se apresentou na festa de Emancipação Política de Cajueiro – AL no de 22 de maio de 2011.

Clique na Foto para exibir todas.

segunda-feira, 23 de maio de 2011

VÍDEOS DA BANDA PEDRO CARNAÚBA EM VIÇOSA - AL

Aqui estou mostrando videos da Banda Fanfarra da escola Municipal Pedro carnaúba na inauguração do Laboratório de Aprendizagem em Viçosa de Alagoas no dia 23 de maio de 2011.

APRESENTAÇÃO DA BANDA FANFARRA PEDRO CARNAÚBA EM CAJUEIRO - AL

Estou mostrando a vocês aqui alguns vídeos da apresentação da Banda Fanfarra Pedro Carnaúba na sua apresntação na Cidade de Cajueiro no dia 22 de maio de 2011, num domingo, onde se comemora naquela cidade a Emancipação Política da Cidade, que naquela data estavam comemorando os 53 anos de Emancipação.

Professora do Rio Grande do Norte

No dia 10 de maio, em uma audiência pública realizada na Câmara de Deputados do Rio Grande do Norte, transmitida pela TV, tendo como tema da pauta era o cenário atual da Educação no Estado.

A professora Amanda Gurgel se inscreveu para falar sobre o tema e, com desenvoltura, silenciou os deputados com um depoimento de quem conhece exatamente a matéria. Ela iniciou falando sobre as angústias de quem está em sala de aula. Após vários números terem sido citados antes de seu pronunciamento, a professora pegou carona e iniciou o seu discurso mencionando um número irrefutável. O próprio salário, que custa aos cofres públicos o montante de R$ 930. Ao ser questionada se seria uma profissional formada, rebateu de pronto: "Sim, nível superior, com especialização". E seguiu, sem ser interrompida fazendo uma pergunta bastante temida aos deputados presentes. A professora quis saber se os deputados conseguiriam manter o padrão de vida que levam, com o salário que ela recebia. Amanda pediu ainda, que os deputados só respondessem, se não ficassem constrangidos. O silêncio foi a resposta que arrancou aplausos dos presentes.

Veja o Vídeo:



Inauguração do Laboratório de Aprencizagem






Hoje dia 23 de maio de 2011 aconteceu em Viçosa – AL a inauguração do Laboratório de Aprendizagem na Praça Apolinário Rebelo, no antigo prédio onde era a Emergência de Viçosa, o evento contou com a presença do deputado Federal Joaquim Beltrão Siqueira do (PMDB), além da presença do Prefeito Flaubert Filho e do Vice Prefeito Manoel dos Passos Vilela (Vô), dos Vereadores na pessoa do Presidente da Câmera de Vereadores José Reinaldo Pedrosa Chagas, da Secretária de Educação e Primeira Dama Ana Paula Calazans Torres contou ainda com a presença de vários Secretários do Município, autoridades e diretores da várias escolas do Município, no Coffee Break contou com o músico Tiago Fernandes e em frente ao do Prédio a Branda Fanfarra da Escola Pedro Carnaúba deu um show, tendo Diretora Vandege Ferro, como Coordenador Fernando Melo, com Maestro Jailton Lima e como Coreógrafa Jucelane Cristina. A Banda formou em frente ao Laboratório de Aprendizagem e iniciou com a execução do Hino Nacional e em seguida com o Hino de Viçosa, logo depois executou outras músicas, logo depois a apresentação da Banda o Prefeito e autoridades presentes se dirigiram para a placa de inauguração, onde ocorreu a inauguração oficial do Laboratório.

sábado, 21 de maio de 2011

HISTÓRIA DOS NÚMEROS


A noção de número e suas extraordinárias generalizações estão intimamente ligadas à história da humanidade. E a própria vida está impregnada de matemática: grande parte das comparações que o homem formula, assim como gestos e atitudes cotidianas, aludem conscientemente ou não a juízos aritméticos e propriedades geométricas. Sem esquecer que a ciência, a indústria e o comércio nos colocam em permanente contato com o amplo mundo da matemática.

A LINGUAGEM DOS NÚMEROS

Em todas as épocas da evolução humana, mesmo nas mais atrasadas, encontra-se no homem o sentido do número. Esta faculdade lhe permite reconhecer que algo muda em uma pequena coleção (por exemplo, seus filhos, ou suas ovelhas) quando, sem seu conhecimento direto, um objeto tenha sido retirado ou acrescentado.
O sentido do número, em sua significação primitiva e no seu papel intuitivo, não se confunde com a capacidade de contar, que exige um fenômeno mental mais complicado. Se contar é um atributo exclusivamente humano, algumas espécies de animais parecem possuir um sentido rudimentar do número. Assim opinam, pelo menos, observadores competentes dos costumes dos animais. Muitos pássaros têm o sentido do número. Se um ninho contém quatro ovos, pode-se tirar um sem que nada ocorra, mas o pássaro provavelmente abandonará o ninho se faltarem dois ovos. De alguma forma inexplicável, ele pode distinguir dois de três.

O corvo assassinado

Um senhor feudal estava decidido a matar um corvo que tinha feito ninho na torre de seu castelo. Repetidas vezes tentou surpreender o pássaro, mas em vão: quando o homem se aproximava, o corvo voava de seu ninho, colocava-se vigilante no alto de uma árvore próxima, e só voltava à torre quando já vazia. Um dia, o senhor recorreu a um truque: dois homens entraram na torre, um ficou lá dentro e o outro saiu e se foi. O pássaro não se deixou enganar e, para voltar, esperou que o segundo homem tivesse saído. O estratagema foi repetido nos dias seguintes com dois, três e quatro homens, sempre sem êxito. Finalmente, cinco homens entraram na torre e depois saíram quatro, um atrás do outro, enquanto o quinto aprontava o trabuco à espera do corvo. Então o pássaro perdeu a conta e a vida.
As espécies zoológicas com sentido do número são muito poucas (nem mesmo incluem os monos e outros mamíferos). E a percepção de quantidade numérica nos animais é de tão limitado alcance que se pode desprezá-la. Contudo, também no homem isso é verdade. Na prática, quando o homem civilizado precisa distinguir um número ao qual não está habituado, usa conscientemente ou não - para ajudar seu sentido do número - artifícios tais como a comparação, o agrupamento ou a ação de contar. Essa última, especialmente, se tornou parte tão integrante de nossa estrutura mental que os testes sobre nossa percepção numérica direta resultaram decepcionantes. Essas provas concluem que o sentido visual direto do número possuído pelo homem civilizado raras vezes ultrapassa o número quatro, e que o sentido tátil é ainda mais limitado.

Limitações vêm de longe

Os estudos sobre os povos primitivos fornecem uma notável comprovação desses resultados. Os selvagens que não alcançaram ainda o grau de evolução suficiente para contar com os dedos estão quase completamente disprovidos de toda noção de número. Os habitantes da selva da África do Sul não possuem outras palavras numéricas além de um, dois e muitos, e ainda essas palavras estão desvinculadas que se pode duvidar que os indígenas lhes atribuam um sentido bem claro.
Realmente não há razões para crer que nossos remotos antepassados estivessem mais bem equipados, já que todas as linguagens européias apresentam traços destas antigas limitações: a palavra inglesa thrice, do mesmo modo que a palavra latina ter, possui dois sentidos: "três vezes" e "muito". Há evidente conexão entre as palavras latinas tres (três) e trans (mais além). O mesmo acontece no francês: trois (três) e très (muito).
Como nasceu o conceito de número? Da experiência? Ou, ao contrário, a experiência serviu simplesmente para tornar explícito o que já existia em estado latente na mente do homem primitivo? Eis aqui um tema apaixonante para discussão filosófica.
Julgando o desenvolvimento dos nossos ancestrais pelo estado mental das tribos selvagens atuais, é impossível deixar de concluir que sua iniciação matemática foi extremamente modesta. Um sentido rudimentar de número, de alcance não maior que o de certos pássaros, foi o núcleo do qual nasceu nossa concepção de número. Reduzido à percepção direta do número, o homem não teria avançado mais que o corvo assassinado pelo senhor feudal. Todavia, através de uma série de circunstâncias, o homem aprendeu a completar sua percepção limitada de número com um artifício que estava destinado a exercer influência extraordinária em sua vida futura. Esse artifício é a operação de contar, e é a ele que devemos o progresso da humanidade.

O número sem contagem

Apesar disso, ainda que pareça estranho, é possível chegar a uma idéia clara e lógica de número sem recorrer a contagem. Entrando numa sala de cinema, temos diante de nós dois conjuntos: o das poltronas da sala e o dos espectadores. Sem contar, podemos assegurar se esses dois conjuntos têm ou não igual número de elementos e, se não têm, qual é o de menor número. Com efeito, se cada assento está ocupado e ninguém está de pé, sabemos sem contar que os dois conjuntos têm igual número. Se todas as cadeiras estão ocupadas e há gente de pé na sala, sabemos sem contar que há mais pessoas que poltronas.
Esse conhecimento é possível graças a um procedimento que domina toda a matemática, e que recebeu o nome de correspondência biunívoca. Esta consiste em atribuir a cada objeto de um conjunto um objeto de outro, e continuar assim até que um ou ambos os conjuntos se esgotem.
A técnica de contagem, em muitos povos primitivos, se reduz precisamente a tais associações de idéias. Eles registram o número de suas ovelhas ou de seus soldados por meio de incisões feitas num pedaço de madeira ou por meio de pedras empilhadas. Temos uma prova desse procedimento na origem da palavra "cálculo", da palavra latina calculus, que significa pedra.

A idéia de correspondência

A correspondência biunívoca resume-se numa operação de "fazer corresponder". Pode-se dizer que a contagem se realiza fazendo corresponder a cada objeto da coleção (conjunto), um número que pertence à sucessão natural: 1,2,3...
A gente aponta para um objeto e diz: um; aponta para outro e diz: dois; e assim sucessivamente até esgotar os objetos da coleção; se o último número pronunciado for oito, dizemos que a coleção tem oito objetos e é um conjunto finito. Mas o homem de hoje, mesmo com conhecimento precário de matemática, começaria a sucessão numérica não pelo um mas por zero, e escreveria 0,1,2,3,4...
A criação de um símbolo para representar o "nada" constitui um dos atos mais audaciosos da história do pensamento. Essa criação é relativamente recente (talvez pelos primeiros séculos da era cristã) e foi devida às exigências da numeração escrita. O zero não só permite escrever mais simplesmente os números, como também efetuar as operações. Imagine o leitor - fazer uma divisão ou multiplicação em números romanos! E no entanto, antes ainda dos romanos, tinha florescido a civilização grega, onde viveram alguns dos maiores matemáticos de todos os tempos; e nossa numeração é muito posterior a todos eles.

Do relativo ao absoluto

Pareceria à primeira vista que o processo de correspondência biunívoca só pode fornecer um meio de relacionar, por comparação, dois conjuntos distintos (como o das ovelhas do rebanho e o das pedras empilhadas), sendo incapaz de criar o número no sentido absoluto da palavra. Contudo, a transição do relativo ao absoluto não é difícil.
Criando conjuntos modelos, tomados do mundo que nos rodeia, e fazendo cada um deles caracterizar um agrupamento possível, a avaliação de um dado conjunto fica reduzida à seleçào, entre os conjuntos modelos, daquele que possa ser posto em correspondência biunívoca com o conjunto dado.
Começou assim: as asas de um pássaro podiam simbolizar o número dois, as folhas de um trevo o número três, as patas do cavalo o número quatro, os dedos da mão o número cinco. Evidências de que essa poderia ser a origem dos números se encontram em vários idiomas primitivos.
É claro que uma vez criado e adotado, o número se desliga do objeto que o representava originalmente, a conexão entre os dois é esquecida e o número passa por sua vez a ser um modelo ou um símbolo. À medida que o homem foi aprendendo a servir-se cada vez mais da linguagem, o som das palavras que exprimiam os primeiros números foi substituindo as imagens para as quais foi criado. Assim os modelos concretos iniciais tomaram a forma abstrata dos nomes dos números. É impossível saber a idade dessa linguagem numérica falada, mas sem dúvida ela precedeu de vários milhões de anos a aparição da escrita.
Todos os vestígios da significação inicial das palavras que designam os números foram perdidos, com a possível excessão de cinco (que em várias línguas queria dizer mão, ou mão estendida). A explicação para isso é que, enquanto os nomes dos números se mantiveram invariáveis desde os dias de sua criação, revelando notável estabilidade e semelhança em todos os grupos linguísticos, os nomes dos objetos concretos que lhes deram nascimento sofreram uma metamorfose completa.

Palavras que representam números em algumas línguas indo-européias:
Grego arcaico
Latim
Alemão
Inglês
Francês
Russo
1
en
unus
eins
one
un
odyn
2
duo
duo
zwei
two
deux
dva
3
tri
tres
drei
three
trois
tri
4
tetra
quatuor
vier
four
quatre
chetyre
5
pente
quinque
fünf
five
cinq
piat
6
hex
sex
sechs
six
six
chest
7
hepta
septem
sieben
seven
sept
sem
8
octo
octo
acht
eight
huit
vosem
9
ennea
novem
neun
nine
neuf
deviat
10
deca
decem
zehn
ten
dix
desiat
100
hecaton
centum
hundert
hundred
cent
sto
1000
xilia
mille
tausend
thousand
mille
tysiatsa

Fonte: Dicionário Enciclopédico Conhecer - Abril Cultural

EUCLIDES


EUCLIDES
Em tempos muito remotos, um jovem, resolvendo ser espirituoso, perguntou a seu mestre qual o lucro que poderia lhe advir do estudo da geometria.

Idéia infeliz: o mestre era o grande matemático grego Euclides, para quem geometria era coisa muito séria. E a sua resposta à ousadia foi arrasadora: chamando um escravo, passou-lhe algumas moedas e mandou que as entregasse ao aluno que a partir daquele momento deixou de ser aluno de Euclides.
Esse rapaz - é preciso dizê-lo - não foi o único a sofrer nas mãos de Euclides por causa da geometria. Além dele, muita gente passou maus bocados com o grande grego, inclusive o próprio faraó do Egito. Os problemas de Ptolomeu I surgiram no dia em que pediu a Euclides que adotasse um método mais fácil para ensinar-lhe geometria e recebeu a lacônica resposta: "não existem estradas reais para se chegar à geometria".

Alexandria, capital da Geometria

Muito antes de Euclides, a geometria já era assunto corrente no Egito. Agrimensores usavam-na para medir terrenos, construtores recorriam a ela para projetar suas pirâmides e com ela se infernizava a juventude, no momento de aprender a manejar a constante Pi - dor de cabeça séria também para os estudantes daquela época. Tão famosa era a geometria egípcia, que matemáticos gregos de nome, como Tales de Mileto e Pitágoras, se abalavam de sua terra para ir ao Egito ver o que havia de novo em matéria de ângulos e linhas. Foi com Euclides, entretanto, que a geometria do Egito se tornou realmente formidável, fazendo de Alexandria o grande centro mundial do compasso e do esquadro, por volta do século III a.C.

Tudo começou com os "Elementos", um livro de 13 volumes, no qual Euclides reuniu tudo que se sabia sobre matemática em seu tempo - aritmética, geometria plana, teoria das proporções e geometria sólida. Sistematizando a grande massa de conhecimentos que os egípcios haviam adquirido desordenadamente através do tempo, o matemático grego deu ordem lógica e esmiuçou a fundo as propriedades das figuras geométricas, das áreas e volumes, e estabeleceu o conceito de lugar geométrico. Depois, para completar, enunciou o famoso "Postulado das Paralelas", que afirma: "Se uma reta, interceptando duas outras, forma ângulos internos do mesmo lado, menores que dois retos, estas outras, prolongando-se ao infinito, encontrar-se-ão no lado onde os ângulos sejam menores do que dois retos."

As geometrias dissidentes


Para Euclides, a geometria era uma ciência dedutiva que operava a partir de certas hipóteses básicas - os "axiomas". Estes eram considerados óbvios e, portanto, de explicação desnecessária. O "Postulado das Paralelas", por exemplo, era um axioma - não havia porque discuti-lo. Acontece, porém, que no século XIX os matemáticos resolveram começar a discutir os axiomas. E tantas fizeram que acabaram verificando um fato surpreendente: bastava por de parte o "Postulado das Paralelas" - a viga mestra do sistema euclidiano - para tornar possível o desenvolvimento de novos sistemas geométricos. O matemático Lobatchevsky foi o primeiro a declarar sua independência, criando a sua própria teoria. Um outro mestre da geometria, Riemann, seguiu o exemplo e criou um sistema diferente.
Essas novas concepções, que se tornaram conhecidas pelo nome de "teorias não-euclidianas", permitiram às ciências exatas do século XX uma série de avanços, entre os quais a elaboração da Teoria da Relatividade de Einstein, o que veio provar que essas teorias, ao contrário do que muitos afirmavam, tinham realmente aplicações práticas.

Além de matemática, óptica e acústica

A Teoria da Relatividade, estabelecendo que o Universo é finito, eliminou a velha noção euclidiana do mundo sem fim. E o progresso contínuo da matemática moderna pouco a pouco foi modificando os conceitos do mestre de Alexandria.

Vivemos em novos tempos, é bom que haja idéias novas. Mas não se pode deixar de sentir respeito pelo talento admirável do velho Euclides, que, enquanto criava seu prodigioso sistema matemático, ainda achava tempo para estudar óptica e escrever extensamente a respeito; para estudar acústica e desenvolver brilhantemente o tema, principalmente na parte que se refere a consonâncias e dissonâncias. Os escritos que deixou sobre esse assunto podem ser considerados como um dos primeiros tratados conhecidos sobre Harmonia Musical. Além disso, convém não esquecer que, para o homem chegar à conclusão de que o Universo tem fim, teve que se utilizar durante dois milênios da matemática criada por Euclides - homem que acreditava no infinito.

FONTE: SÓ MATEMÁTICA

AL-KHWARIZMI

AL-KHWARIZMI



Abu Abdullah Mohammed ben Musa Al-Khwarizmi foi um matemático árabe que nasceu em torno de 780 e morreu por volta do ano 850. Sabe-se pouco sobre sua vida. Há indícios de que ele, ou a sua família, era originário de Khowarezm, a região a sul do mar Aral, na altura parte da Pérsia ocupada pelo Árabes (atualmente parte do Uzbequistão). Foi um dos primeiros matemáticos a trabalhar na Casa da Sabedoria, em Baghdad, durante o reinado do califa al-Mamum (813-833).
Al-Khwarizmi escreveu tratados sobre aritmética, álgebra, astronomia, geografia e sobre o calendário. É possível que tenha escrito um tratado sobre o astrolábio e outro sobre relógios de sol, mas estes dois últimos não chegaram aos nossos dias. Tanto o tratado sobre a aritmética como o sobre a álgebra constituíram o ponto de partida para trabalhos posteriores e exerceram uma forte influência no desenvolvimento da matemática, principalmente da aritmética e da álgebra.

A versão original do pequeno tratado de aritmética de Al-Khwarizmi encontra-se perdida, mas este chegou a Espanha e existem traduções, do século XII, para latim. No seu texto al-Khwarizmi introduz os nove símbolos indianos para representar os algarismos e um círculo para representar o zero. Depois explica como escrever um número no sistema decimal de posição utilizando os 10 símbolos. Descreve as operações de cálculo (adição, subtração, divisão e a multiplicação) segundo o método indiano e explica a extração da raiz quadrada. Depois do cálculo com números inteiros, aborda o cálculo com frações (expressando-as como a soma de frações unitárias).

De acordo com Youschkevitch, existem três textos, em latim, do século XII, que podem ser traduções do tratado de aritmética de al-Khwarizmi. O Liber Algorismi de pratica arismetrice (o Livro de Algorismi sobre a aritmética prática), escrito por João de Sevilha (ou de Todelo), um judeu espanhol convertido ao catolicismo que trabalhou em Todelo de 1135 a 1153. O Liber Ysagogarum Alchorismi in artem astronomicam (Introdução de Algorismi sobre a arte da astronomia), do qual se conhecem várias cópias, uma datada de 1143. Não se sabe quem terá sido o seu autor se o inglês Adelardus de Bada, ou Bath (que pertencia à escola de Toledo), ou de Robert de Cherter, também inglês. Youschkevitch, refere, ainda, uma outra tradução, do século XIII, sem título, que se encontra na Biblioteca da Universidade de Cambridge, publicada por Boncompagni, em 1857, com o título Algoritmi de numero indorum e que inicia com as palavras Dixit Algorismi (ou seja, Algorismi disse).
A palavra algorismi é portanto a versão latina do nome al-Khwarizmi e que derivou na palavra algoritmo.

O tratado de álgebra escrito por Al-Khwarizmi data de cerca de 830 e tem o título Hisab al-jabr w'al-muqabala, uma possível tradução seria o cálculo por completação (ou restauração) e redução. Al-jabr é a operação que consiste em adicionar termos iguais a ambos os membros da equação de forma a eliminar os termos com coeficiente negativo e al-muqabala a operação que se faz de seguida e que consiste em adicionar os termos semelhantes.

Al-Khwarizmi diz-nos, na introdução da sua álgebra, com o título, que o califa al-Mamum o encorajou a escrever um pequeno trabalho sobre o cálculo pelas regras de completação e redução, confinando-o ao que é mais simples e mais útil na aritmética, tais como as que os homens constantemente necessitam no caso das heranças, partilhas, processos judiciais, e comércio, e em todas os seus negócios com outros, ou quando a medição de terras, a escavação de canais, cálculos geométricos, e outros coisas de várias espécies e tipos estão envolvidos.

O seu livro é composto por três partes. A primeira sobre a álgebra, que precede um breve capítulo sobre os transações comerciais; a segunda sobre a geometria e a terceira parte sobre as questões de heranças. No seu livro Al-Khwarizmi não usa qualquer símbolo, nem sequer os símbolos que descreverá posteriormente na sua aritmética.

O livro foi, também, traduzido para latim, no século XII, mas essas traduções não incluíam a segunda e a terceira partes. Robert de Chester, na sua tradução para latim, de 1140, traduz o tratado de álgebra de al-Khwarizmi com título Liber algebrae et almucabala, portanto álgebra deriva da tradução latina de al-jarb.

VIAGEM DA bANDA FANFARRA PEDRO CARNAÚBA

Neste domingo dia 22 de maio a Banda Fanfarra Pedro Carnaúba da Escola Municipal Pedro Carnaúva desta cidade (Viçosa - AL), irá se apresntar na cidade de Cajueiro - AL, viagem esta decidida de útima hora, pois estava programado que a Banda iria para Craíbas - AL, no entando houve uma mudança e a Banda abrilhantará a Festa de Emancipação Política de Cajueiro. Nesta segunda-feira dia 23 de maio de 2011 a Banda se apresntará na Festa de inauguração do Laboratório de Aprendizagem.

quinta-feira, 19 de maio de 2011

LEI Nº 9.394, DE 20 DE DEZEMBRO DE 1996.




Vide Decreto nº 3.860, de 2001       Estabelece as diretrizes e bases da educação nacional.


Esta LDB está no formato doc, é só baixar clicando na figura abaixo. Muito bom mesmo, aproveite.

Curso interativo de Excel para Finanças Pessoais


Vídeo-Curso de Excel para Finanças Pessoais.Tamanho: 74 MbServidor: HotFile | MegaUploadFormato: Rar/SwfIdioma: Português?

464 Trabalhos Escolares Prontos

Descrição: Este pacote contém vários trabalhos escolares perfazendo um total de 464 arquivos divididos por matérias: Biologia, Espanhol, Geografia, História, Português, Química, Literatura e Inglês.

Categoria: Apostila > Apostila e Cursos
Ano: 2009
Tamanho Total: 15.64 MB

HISTÓRICO ATUALIZADO DA BANDA FANFARRA PEDRO CARNAÚBA


BANDA FANFARRA MUNICIPAL PEDRO CARNAÚBA

Histórico

Fundada em 02 de maio de 2001, e sua apresentação oficial em 13 de outubro de 2001 na administração do Prefeito Flaubert Torres, com todo o incentivo da então Secretária da época Srª Salete Pedrosa Torres, atualmente resgata com um novo projeto de implementação do Programa Musicalidade na Escola, que foi implantado na gestão 2009, como um dos componentes curriculares envolvendo artes, musicalidade e atividades de natureza cultural, pelo atual Prefeito Flaubert Torres Filho e a Secretária de Educação Ana Paula Calazans Torres, que não medem esforços em fortalecer esses valores que estão agregados a educação, a cultura e a cidadania, através da dança, da arte do folclore como um todo, que se faz presente pelo processo de participação livre dos alunos nos diversos tipos de atividades neste resgate dos aspectos sócio-educacionais, a referida Banda Municipal teve nova caracterização, onde foram adicionadas diversas atividades de expressão musical, corporal, artística com a busca e a descoberta de valores através dos vários talentos existentes em nossos alunos, que hoje se senten construtores de nossa história.
A referida Banda é formada por 195 componentes que são alunos e ex alunos da Escola Municipal Pedro Carnaúba, assim distribruidos: 08 comissão de frente, 06 estandartes, 08 porta bandeiras, 24 balizas, 24 bombos, 20 pares pratos, 24 tarois, 24 atabaques, 16 surdos, 02 timbas, 01 tibale, 02 repique, 01 surdão, 30 músicos e 05 pessoas de apoio.
A Banda Municipal da Escola Pedro Carnaúba deu um grande passo para o progresso, aumentando consideralvemente o número de participantes, de isntrumentos e vem fazendo difundir nossa cultura por todo o Estado de Alagoas com suas apresentações em vários municípios, cujos convites são expressos em momentos cívicos de grande valor para a historia sócio-educacional e cultural, abrangendo feira de artes, emancipação política de diversos municípios, aberturas de jogos e outros vários eventos,que somados aos nossos esfoços se transformam em vida que se faz por vida por meio dos nossos alunos inseridos neste contexto, que tanto faz abrilhantar os valores dos nossos alunos. Vejamos algumas apresentações da referida banda: em 2001, 07 apresentações; em 2002 foram realizadas 11 apresentações; em 2003 esse numero pulou para 16 e em 2004 foram 17, culminando também com a participação em um concuso de Bandas realizados na nossa cidade com a participação de 14 bandas de vários municípios.

Coordenador Geral: Fernando Melo
Diretora Geral: Vandege Ferro
Maestro: Jailton Lima
Regente Coreografa: Jucelane Cristina





BANDA FANFARRA PEDRO CARNAÚBA






A Banda Fanfarra da Escola Municipal Pedro Carnaúba da cidade de Viçosa - AL, deu mais um estáculo em Muricí - AL no dia 15 de maio de 2011, onde foi convidada para abrilhantar na festa de Emancipação Política de Muricí. Esses vídeos mostra apenas a algumas partes da percussão da Banda.

quinta-feira, 12 de maio de 2011

TORNEIO DE ALUNOS E EX-ALUNOS DA ESCOLA MUNICIPAL PEDRO CARNAÚBA

escola 322

Mais um Torneio será ralizado na Quadra de Esporte da Escola Municpal Pedro Carnaúba. O Torneio está previsto para o dia 20 de maio do corrente ano, as inscrições já estão abertas é só procura na própria escola a diretora Vandege ou então, os vices diretores Joaquim Lira ou José Roberto

segunda-feira, 2 de maio de 2011

Bhaskara

Bhaskara viveu de 1114 a 1185 aproximadamente, na India.
Nascido numa tradicional família de astrólogos indianos, seguiu a tradição profissional da família, porém com uma orientação científica, dedicando-se mais à parte matemática e astronômica (tais como o cálculo do dia e hora da ocorrência de eclipses ou das posições e conjunções dos planetas) que dá sustentação à Astrologia. Seus méritos foram logo reconhecidos e muito cedo atingiu o posto de diretor do Observatório de Ujjain, o maior centro de pesquisas matemáticas e astronômicas da India, na época.
Seu livro mais famoso é o Lilavati, um livro bem elementar e dedicado a problemas simples de Aritmética, Geometria Plana (medidas e trigonometria elementar) e Combinatória. A palavra Lilavati é um nome próprio de mulher (a tradução é Graciosa), e a razão de ter dado esse título a seu livro é porque, provavelmente, teria desejado fazer um trocadilho comparando a elegância de uma mulher da nobreza com a elegância dos métodos da Aritmética. Numa tradução turca desse livro, 400 anos depois, foi inventada a história de que o livro seria uma homenagem à filha que não pode se casar. Justamente essa invenção é que tornou-o famoso entre as pessoas de pouco conhecimento de Matemática e de História da Matemática. Parece, também, que os professores estão muito dispostos a aceitarem estórias românticas em uma área tão abstrata e difícil como a Matemática; isso parece humanizá-la mais.
Ele escreveu dois livros matematicamente importantes e devido a isso tornou-se o matemático mais famoso de sua época. Esses livros são:
Equações INDETERMINADAS ou diofantinas:
Chamamos assim às equações (polinomiais e de coeficientes inteiros) com infinitas soluções inteiras, como é o caso de:
y - x = 1 que aceita todos os x = a e y = a + 1 como soluções , qualquer que seja o valor de a
  • a famosa equação de Pell x2 = N y2 + 1
  • Bhaskara foi o primeiro a ter sucesso na resolução dessa equação, para isso introduzindo o método do chakravala (ou pulverizador).
Mas, e a fórmula de Bhaskara?
  • EXEMPLO:
para resolver as equações quadráticas da forma ax2 + bx = c, os indianos usavam a seguinte regra:
"multiplique ambos os membros da equação pelo número que vale quatro vezes o coeficiente do quadrado e some a eles um número igual ao quadrado do coeficiente original da incógnita. A solução desejada é a raiz quadrada disso."
É também muito importante observar que a falta de uma notação algébrica, bem como o uso de métodos geométricos para deduzir as regras, faziam os matemáticos da Era das Regras terem de usar varias regras para resolver equações do segundo grau. Por exemplo, precisavam de regras diferentes para resolver x2 = px + q e x2 + px = q. Foi só na Era das Fórmulas que iniciaram as tentativas de dar um procedimento único para resolver todas as equações de um grau dado.
Bhaskara conhecia a regra acima, porém, a regra não foi descoberta por ele. A regra já era do conhecimento de, no mínimo, o matemático Sridara, que viveu há mais de 100 anos antes de Bhaskara.
Resumindo o envolvimento de Bhaskara com equações do segundo grau
  • Quanto a equações DETERMINADAS do segundo grau:
No Lilavati, Bhaskara não trata de equações quadráticas determinadas e o que ele faz sobre isso no Bijaganita é mera cópia do que já tinham escrito outros matemáticos.
  • Quanto a equações INDETERMINADAS do segundo grau:
  • Aí ele realmente fez grandes contribuições e essas estão expostas no Bijaganita. Pode-se dizer que essas contribuições, principalmente a invenção do método iterativo do chakravala e sua modificação do clássico método kuttaka correspondem ao ápice da matemática indiana clássica, podendo-se acrescentar que é somente com Euler e Lagrange que voltaremos a encontrar desenvoltura técnica e fertilidade de idéias de porte comparáveis.
    FONTE: SÓ MATEMÁTICA
Carregando...
Brasileirão